数学理论与应用 ›› 2022, Vol. 42 ›› Issue (1): 65-84.

• • 上一篇    下一篇

小直径单圈与双圈图的 Mostar 指标与不规则度的差

吴廷增 , 曾晓琳
  

  1. 青海民族大学数学与统计学院, 西宁, 青海, 810007
  • 出版日期:2022-03-31 发布日期:2022-03-31

The Difference of Mostar Index and Irregularity of Unicyclic and Bicyclic Graphs with Small Diameter

Wu Tingzeng, Zeng Xiaolin
  

  1. School of Mathematics and Statistics, Qinghai Minzu University, Xining 810007, China
  • Online:2022-03-31 Published:2022-03-31
  • Contact: Wu Tingzeng(1978−), Professor, PhD;E−mail: mathtzwu@163.com
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (No. 11761056), the Natural Science Foundation of Qinghai Province (No. 2020-ZJ-920), the Scientific Research Innovation Team in Qinghai Minzu University.

摘要: 任给一个连通图, 高芳等人首先引进了~$G$~的一个不变量~$\Delta M(G)=M_{o}(G)-irr(G)$~, 并提出一个问题: 怎样确定所有含~$n$~ 个顶点的连通图~$G$~的~$\Delta M(G)$~的极值, 其中~$M_{o}(G)$~和~$irr(G)$~分别表示~$G$~的~Mostar~指标和不规则度. 本文针对这个问题, 刻画所有直径为3 的单圈图和双圈图~$G$~的~$\Delta M(G)$~ 的上界, 并给出它们的极图.

关键词: Mostar指标, 不规则度, 单圈图, 双圈图, 直径

Abstract:

Let $G$ be a connected graph. Gao et al. first introduced the invariant of $G$: $\Delta M(G)=M_{o}(G)-irr(G)$, and raised a problem: how to determine the extremal graphs among all connected graphs of order $n$ with respect to $\Delta M(G)$, where $M_{o}(G)$ and $irr(G)$ stand for the Mostar index and irregularity of $G$, respectively. In this paper, we characterize the upper bounds of $\Delta M(G)$ over all unicyclic graphs and bicyclic graphs with diameter 3, and determine the extremal graphs.

Key words: Mostar index, Irregular, Unicyclic graph, Bicyclic graph, Diameter