数学理论与应用 ›› 2022, Vol. 42 ›› Issue (1): 51-64.

• • 上一篇    下一篇

热/声耦合方程的解耦分析和数值求解

朱丽艳,邓又军,段超华, 李滔*   

  1. 中南大学数学与统计学院, 长沙 410083
  • 出版日期:2022-03-31 发布日期:2022-02-25
  • 通讯作者: 李滔 (1998−), 硕士研究生, 从事声波反源散射研究; E−mail:litao8413@163.com
  • 基金资助:
    国家自然科学基金项目 (11971487)

Decoupling Analysis and Numerical Solution of Thermal/Acoustic Coupling Equations

Zhu Liyan, Deng Youjun, Duan Chaohua, Li Tao*   

  1. School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha 410083, China)
  • Online:2022-03-31 Published:2022-02-25

摘要:

本文研究均匀各向同性介质中的相互耦合的热弹性波动方程和热传导方程的解耦分析和有限差分法的数值实现.在固体内部, 介质声学参数的温度效应、弹性变形等因素导致声波传播的控制方程由相互耦合的热传导方程和热弹性动力学方程组成, 数值求解存在很大的难度.本文根据二者受扰动的特征时间推进上的不同, 不考虑应变位移对热传导方程的影响, 将双向耦合解耦为顺序耦合, 首先求解热传导方程, 然后将温度场作为附加的热载荷, 求解热弹性波动方程, 得到结构的应变位移场.热传导方程采用经典的有限差分法进行求解, 对于热弹性波动方程的有限差分法进行了研究, 由于双曲型方程对于算法稳定性的要求很高, 普通的显式和隐式差分方法无法达到理想效果, 本文将数值粘性修正原理及五点 CDD8 格式应用到弹性波动方程的有限差分中来, 通过 Fortran 语言进行编程实现, 数值结果表明, 精度和计算效率都较为理想.

关键词:

Abstract:

In this paper we consider the equation coupled by a thermoelastic wave equation and a heat conduction equation in a homogeneous isotropic medium, and give the decoupling analysis and numerical implementation with the finite difference method. Inside solids, the governing equation of acoustic wave propagation consists of coupled heat conduction equation and thermoelastic dynamic equation due to the temperature effect and elastic deformation of medium acoustic parameters, which makes it very difficult to solve numerically. The bidirectional coupling is decoupled into sequential coupling according to the different characteristic time advances of the two equations. Omitting the influence of strain displacement on the heat conduction equation, we first solve the heat conduction equation, and then the thermoelastic wave equation is solved by taking the temperature field as an additional thermal load to obtain the strain displacement field of the structure. The heat conduction equation is solved by the classical finite difference method. We investigate the application of finite difference method to thermoelastic wave equation. Because the hyperbolic equation has high demand for stability of the algorithm, the ordinary explicit and implicit difference methods cannot achieve ideal effect. We apply the principle of numerical viscosity correction and the five points CDD8 format to finite difference method in the elastic wave equation. The program is coded in FORTRAN. The numerical results show that the accuracy and efficiency are satisfactory.

Key words: