Mathematical Theory and Applications ›› 2022, Vol. 42 ›› Issue (1): 85-91.
Previous Articles Next Articles
Xiao Jiaqi, Yuan Pingzhi*, Lin Xucan
Online:
Published:
Contact:
Supported by:
Abstract:
In this paper, we prove that if $n\geq4$ and $a\ge 0$ are integers satisfying $a<\frac{n}{3}$, then
$$\gcd\left(\left\{\binom{n}{k}:a<k<n-a\right\}\right)=\prod_{n=p^{m}+b(n,p),\ 0\le b(n,p)\leq a,} p,$$ where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$, and the product in the right hand side runs through all primes $p$ such that $ n=p^{m}+b(n,p), m\in\mathbb{N}$ and $0\le b(n,p)\leq a$.
As an application of our result, we give an answer to a problem in Hong [16].
Key words: Binomial coefficient , Greatest common divisor
Xiao Jiaqi, Yuan Pingzhi, Lin Xucan. The Greatest Common Divisor of Certain Set of Binomial Coefficients[J]. Mathematical Theory and Applications, 2022, 42(1): 85-91.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://mta.csu.edu.cn/EN/
https://mta.csu.edu.cn/EN/Y2022/V42/I1/85