数学理论与应用 ›› 2025, Vol. 45 ›› Issue (4): 1-27.doi: 10.3969/j.issn.1006-8074.2025.04.001
• • 下一篇
李江涛
出版日期:
发布日期:
LI Jiangtao
Online:
Published:
Supported by:
摘要: 本文引入一种对称zeta函数, 证明其可解析延拓为复三维空间$\mathbb{C}^3$上的亚纯函数, 且仅在某些特殊超平面上存在单极点, 同时计算其在特定奇点处的多重留数值. 对于一个发散多重级数(可视为对称zeta函数在点$(1,1,1)$处的取值), 我们对其增长性进行细致分析, 并揭示其与经典欧拉常数之间的联系.
关键词: 多重zeta值, 黎曼zeta函数
Abstract: In this paper we introduce a symmetric zeta function, prove that it can be analytically continued to a meromorphic function on $\mathbb{C}^3$ with only simple poles on certain special hyperplanes, and calculate the multiple residue values at particular singular points. For a divergent multiple series that can be regarded as the value of the symmetric zeta function at the point $(1,1,1)$, we conduct a detailed analysis on its growth behavior and establish a connection with the classical Euler constant.
Key words: Multiple zeta value , Riemann zeta function
李江涛. 关于对称zeta函数的注记[J]. 数学理论与应用, 2025, 45(4): 1-27.
LI Jiangtao. Remark on a Symmetric zeta Function[J]. Mathematical Theory and Applications, 2025, 45(4): 1-27.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: https://mta.csu.edu.cn/CN/10.3969/j.issn.1006-8074.2025.04.001
https://mta.csu.edu.cn/CN/Y2025/V45/I4/1