数学理论与应用 ›› 2025, Vol. 45 ›› Issue (4): 1-27.doi: 10.3969/j.issn.1006-8074.2025.04.001

• •    下一篇

关于对称zeta函数的注记

李江涛   

  1. 中南大学数学与统计学院, 长沙, 410083
  • 出版日期:2025-12-28 发布日期:2026-01-15

Remark on a Symmetric zeta Function

LI Jiangtao   

  1. School of Mathematics and Statistics, Central South University, Changsha 410083, China
  • Online:2025-12-28 Published:2026-01-15
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (No. 12571009)

摘要: 本文引入一种对称zeta函数, 证明其可解析延拓为复三维空间$\mathbb{C}^3$上的亚纯函数, 且仅在某些特殊超平面上存在单极点, 同时计算其在特定奇点处的多重留数值. 对于一个发散多重级数(可视为对称zeta函数在点$(1,1,1)$处的取值), 我们对其增长性进行细致分析, 并揭示其与经典欧拉常数之间的联系.

关键词: 多重zeta值, 黎曼zeta函数

Abstract: In this paper we introduce a symmetric zeta function, prove that it can be analytically continued to a meromorphic function on $\mathbb{C}^3$ with only simple poles on certain special hyperplanes, and calculate the multiple residue values at particular singular points. For a divergent multiple series that can be regarded as the value of the symmetric zeta function at the point $(1,1,1)$, we conduct a detailed analysis on its growth behavior and establish a connection with the classical Euler constant.

Key words: Multiple zeta value , Riemann zeta function