数学理论与应用 ›› 2021, Vol. 41 ›› Issue (4): 100-.
• • 上一篇 下一篇
刘迪* 刘西盟 谢永钦
出版日期:
发布日期:
通讯作者:
Online:
Published:
摘要:
本文讨论带有时间依赖扩散系数的分数阶非经典扩散方程的适定性问题, 运用非经典的Faedo-Galerkin方法、插值不等式以及控制收敛原理, 得到方程在分数阶Sobolev空间Hθ(0<θ≤1)中整体弱解的存在性、唯一性及其对初值的连续依赖性, 其中非线性项满足任意阶多项式增长条件.
关键词: 时间依赖扩散系数; , 分数阶非经典扩散方程; , 整体弱解; , 任意阶多项式增长
Abstract: This paper discusses the well-posedness problem of fractional nonclassical diffusion equations with time-dependent dissipation coefficients. Using the nonclassical Faedo-Galerkin method, the interpolation inequality and the control convergence principle, the existence, uniqueness and continuous dependence on initial values of the global weak solution in Hθ(0<θ≤1) for the equations are obtained, where the nonlinearity f satisfies the polynomial growth of arbitrary order.
Key words: Time-dependent diffusion coefficient; , Fractional nonclassical diffusion equation; , Global weak solution; , Polynomial growth of arbitrary order
刘迪 刘西盟 谢永钦. 带时间依赖扩散系数的分数阶非经典扩散方程的适定性[J]. 数学理论与应用, 2021, 41(4): 100-.
导出引用管理器 EndNote|Ris|BibTeX
链接本文: https://mta.csu.edu.cn/CN/
https://mta.csu.edu.cn/CN/Y2021/V41/I4/100