数学理论与应用 ›› 2021, Vol. 41 ›› Issue (1): 12-.

• • 上一篇    下一篇

环境噪声驱动下的个体群集动力学研究

翟圣艺1  田蓉蓉1,*  程水林2   

  1. 1.武汉理工大学理学院,武汉,430070; 2.中南财经政法大学统计与数学学院,武汉,430073
  • 出版日期:2021-03-30 发布日期:2021-08-10
  • 通讯作者: 田蓉蓉(1988-),博士,从事随机微分方程的研究;E-mail:tianrr06@sina.com
  • 基金资助:
    本文第一作者与第二作者受国家自然科学基金项目(11901442)资助,第三作者受中南财经政法大学中央高校基本科研业务费专项资金(2722020JCG060)资助

Study on Individual Flocking Dynamics under the Influence of Multiplicative Noise

  1. 1. College of Science, Wuhan University of Technology, Wuhan 430070, China; 2.School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073, China
  • Online:2021-03-30 Published:2021-08-10

摘要: 群集效应是一种在自然科学和社会科学中经常出现的演化现象. 对这类现象的深入研究有望从根本上解决相关系统的可靠性问题, 进而具有可观的应用价值. 本文旨在研究环境噪声驱动下的个体群集问题, 通过采用常微分方程与随机微分方程对其建模、分析比对其解的渐近行为, 我们得到一个重要的结论: 在相同假设条件下, 常微分方程不会发生群集效应, 而随机微分方程产生群集效应, 即环境噪声会促使个体发生群集现象. 最后, 通过对模型参数赋予特定的数值, 作模型对比图, 直观地说明环境噪声导致个体发生群集效应, 这与我们的理论结果一致.

关键词: 随机微分方程 , 环境噪声 , 群集效应

Abstract: The cluster effect is an evolution phenomenon that often appears in natural and social sciences. The in-depth study of this kind of phenomenon is expected to fundamentally solve the reliability problem of the relevant system, and thus has considerable application value. The purpose of this paper is to study the individual clustering problem driven by the environmental noise. By using ordinary differential equation and stochastic differential equation to model the phenomenon, analyze and compare the asymptotic behavior of the solution, we get an important conclusion: under the same assumptions, ordinary differential equations do not produce clustering effect, while stochastic differential equations produce clustering effect, that is, the environmental noise can promote the individual clustering phenomenon. Finally, by giving specific values to the model's parameters and aplotting a comparison diagram, it is intuitively shown that the environmental noise leads to individual cluster effect, which is consistent with our theoretical results.

Key words: Stochastic differential equation ,  , Environmental noise ,  , Flocking effect