数学理论与应用 ›› 2025, Vol. 45 ›› Issue (2): 93-109.doi: 10.3969/j.issn.1006-8074.2025.02.006

• • 上一篇    下一篇

具有年龄结构的呼吸道合胞病毒SIRS传染病模型研究

林彩虹1, 高树坤1, 王文聪1, 张龙1,2,*   

  1. 1. 新疆大学数学与系统科学学院,新疆乌鲁木齐, 830017; 2. 新疆维吾尔自治区应用数学重点实验室, 新疆乌鲁木齐, 830017
  • 出版日期:2025-06-28 发布日期:2025-08-09

Study on a Respiratory Syncytial Virus SIRS Model with Age Structure

LIN Caihong1,GAO Shukun1, WANG Wencong1, ZHANG Long1,2,*   

  1. 1. School of Mathematics and Systems Science, Xinjiang University, Urumqi 830017, China; 2. The Key Laboratory of Applied Mathematics of Xinjiang Uygur Autonomous Region,~Urumqi 830017, China
  • Online:2025-06-28 Published:2025-08-09
  • Supported by:
    This work is supported by the Natural Science Foundation of Xinjiang Province~(No. 2022D01E41),~the National Natural Science Foundation of China~(No.~12261087),~the Open Project of Key Laboratory of Applied Mathematics of Xinjiang Autonomous Region~(No. 2021D04014)

摘要:

本文研究一类具有年龄结构的呼吸道合胞病毒SIRS传染病模型. 首先, 计算出模型的基本再生数 $R_{0}$, 并证明模型在初始条件下解

的正性和有界性. 其次, 证明: 当~$R_{0}<1$ 时,无病平衡点局部及全局渐近稳定; 当 $R_{0}>1$ 时, 模型一致持续且存在正平衡点. 最后, 通过数值模拟演示理论结果的有效性, 并预测接种疫苗对疾病传播产生的影响.

关键词: 呼吸道合胞病毒(RSV) , 年龄结构, 基本再生数, 一致持续 , 稳定性

Abstract: In this paper, we study the epidemic model of respiratory syncytial virus SIRS with age structure. Firstly, the basic reproduction number $R_{0}$ of the model is calculated and the positivity and ultimate boundedness of the solution to the model under initial conditions are proven. Secondly, it is proven that when $R_{0}<1$, the disease-free equilibrium is locally and globally asymptotically stable;~and when $R_{0}>1$, the disease is uniformly persistent and there is at least a positive equilibrium. Finally, the effectiveness of the theoretical results is demonstrated by numerical simulation, and the impact of vaccination on disease transmission is predicted.

Key words: Respiratory syncytial virus (RSV), Age structure, Basic reproduction number, Uniform persistence, Stability