数学理论与应用 ›› 2025, Vol. 45 ›› Issue (2): 40-52.doi: 10.3969/j.issn.1006-8074.2025.02.003

• • 上一篇    下一篇

有界线性算子 (ω) 性质的判定及其稳定性

戴磊1,*,伊佳璐2, 曹小红2   

  1. 1. 渭南师范学院数学与统计学院, 渭南, 714099; 2. 陕西师范大学数学与统计学院, 西安, 710119
  • 出版日期:2025-06-28 发布日期:2025-08-09

Property  (ω)  for Bounded Linear Operators and Its Stability

DAI Lei$1,*, YI Jialu2,  CAO Xiaohong2   

  1. 1. School of Mathematics and Statistics, Weinan Normal University, Weinan 714099, China; 2. School of Mathematics and Statistics, Shanxi Normal University, Xian 710119, China
  • Online:2025-06-28 Published:2025-08-09
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (No. 11501419) and the Nature Science Basic Research Plan in Shaanxi Province of China (No. 2021JM-519)

摘要: 本文借助有界线性算子一致Fredholm非正指标的性质, 给出算子及其函数满足$(\omega)$性质的判定准则及刻画$(\omega)$性质稳定性的若干等价条件, 探讨$(\omega)$性质的稳定性与算子函数满足$(\omega)$性质之间的内在联系.

关键词: 函数演算, $(\omega)$性质, 谱, 稳定性, $CFI_-$算子

Abstract: In this paper, using the property of uniform Fredholm non-positive index of bounded linear operators, we give criteria for operators and their functions to possess property $(\omega)$, and several equivalent conditions for the stability of property $(\omega)$, and investigate the relationship between the stability of property $(\omega)$ and the $(\omega)$-property of operator functions.

Key words: Functional calculus, Property $(\omega)$, Spectrum, Stability, $CFI_-$ operator