数学理论与应用 ›› 2023, Vol. 43 ›› Issue (3): 23-60.doi: 10.3969/j.issn.1006-8074.2023.03.002

• • 上一篇    下一篇

子流形低阶曲率泛函的变分计算与间隙现象

刘进   

  1. 国防科技大学系统工程学院, 长沙, 410073
  • 出版日期:2023-09-28 发布日期:2023-10-09
  • 基金资助:
    湖南省自然科学基金(No. 2021JJ30771)和国家自然科学基金(No. 11701565)资助

Variational Calculation and Gap Phenomena of Low Order Curvature Functional of Sub-manifolds

Liu Jin   

  1. College of Systems Engineering, National University of Defense Technology, Changsha 410073, China
  • Online:2023-09-28 Published:2023-10-09

摘要:

设$\varphi:M^{n}\to N^{n+p}$是一般外围流形中的$n$维紧致无边子流形. $\varphi$的第二基本型模长平方$S$、 平均曲率模长平方$H^{2}$和迹零第二基本型模长平方$\rho=S-nH^{2}$等重要的低阶曲率分别刻画了全测地、极小、全脐等重要的几何性质. 本文构造低阶曲率泛函${\mathcal L}_{(I,n,F)}(\varphi)=

\int_{M}F(S,H^{2}){\rm{d}}v, {\mathcal L}_{(II,n,F)}(\varphi)=\int_{M}F(\rho,H^{2}){\rm{d}}v$, 其中$F:[0,+\infty)\times [0,+\infty)\to \mathbb{R}$ 是一个抽象的充分光滑的双变量函数. 这类泛函可刻画子流形与全测地子流形、极小子流形和全脐子流形的整体差异, 将多类子流形泛函囊括在统一的框架之下, 且与子流形中多类著名问题, 如Willmore猜想, 有着密切联系. 本文将计算第一变分公式, 在空间形式中构造临界点的一些例子, 推导泛函临界点的积分不等式, 并基于此对间隙现象进行讨论.

关键词: 第二基本型, 低阶曲率, 间隙现象 , 积分不等式, 临界点

Abstract: Let $\varphi:M^{n}\to N^{n+p}$ be an $n$-dimensional compact without boundary sub-manifold in a general real ambient manifold. Its three important low order curvatures: the square length $S$ of second fundamental form, the square length $H^{2}$ of mean curvature, and the square length $\rho=S-nH^{2}$ of trace zero second fundamental form, respectively describe the geometric properties of totally geodesic, minimal, and totally umbilical. Let $F: [0,+\infty)\times [0,+\infty)\to \mathbb{R}$ be an abstract smooth bivariate function. In this paper, we construct two functionals ${\mathcal L}_{(I,n,F)}(\varphi)=\int_{M}F(S,H^{2}){\rm{d}}v$ and $ {\mathcal L}_{(II,n,F)}(\varphi)=\int_{M}F(\rho,H^{2}){\rm{d}}v$, which include some well-known functionals as special cases, measure how derivations $\varphi$ from totally geodesic, minimal, or totally umbilical sub-manifolds globally, and have a closed relation to the Willmore conjecture. For these functionals, we obtain the first variational equations, and construct a few examples of critical points in space forms. Moreover, we derive out some integral inequalities, and based on which classify the gap phenomenon.

Key words: Second fundamental form, Low order curvature,   Gap phenomenon,   Integral inequality,   Critical point