In this paper a
kind of integral operator $I^{\beta}_{\alpha}f(z)$ related to the
parameters $\alpha, \beta$ in an open unit disk is investigated. Firstly,
the bi-univalent function classes $\mathfrak{H}_{\Sigma_{q}}^{\alpha,\beta}(\lambda;\phi)$ and $\mathfrak{L}_{\Sigma_{q}}^{\alpha,\beta}(\mu,\lambda;\phi)$ involving this integral operator and the $q$-derivative operator are defined by applying the subordination principle of analytic functions. Then, the upper bounds of the first two coefficients $a_{2}$ and $ a_{3}$ of the two classes of bi-univalent analytic functions are estimated, and the corresponding Fekete-Szegö inequalites for these classes are obtained.