Mathematical Theory and Applications ›› 2025, Vol. 45 ›› Issue (3): 81-95.doi: 10.3969/j.issn.1006-8074.2025.03.004
Previous Articles Next Articles
ZHAO Kevin*; LIANG Wanjun;CHEN Lifang
Online:
Published:
Supported by:
Abstract: Let $G$ be a finite group and $d$ a positive integer. Let $s_{d\mathbb{N}} (G)$ denote the smallest positive integer $l$ such that every sequence over $G$ of length at least $l$ contains a nonempty product-one subsequence $T$ with $|T|\equiv0 \pmod{d}$. This paper studies $s_{d\mathbb{N}} (D_{2n})$ for the dihedral group $D_{2n}$ and shows that when $n=2^r$ with $r\geq3$, the equality $s_{d\mathbb{N}} (D_{2n})=\operatorname{lcm}(n, d)+\gcd(n, d)$ holds.
Key words: Dihedral group, Product-one sequence, Congruence condition, Davenport constant
ZHAO Kevin, LIANG Wanjun, CHEN Lifang. Precise Value of the Invariant $s_{d\mathbb{N}} (D_{2n})$ over the Dihedral Group $D_{2n}$[J]. Mathematical Theory and Applications, 2025, 45(3): 81-95.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://mta.csu.edu.cn/EN/10.3969/j.issn.1006-8074.2025.03.004
https://mta.csu.edu.cn/EN/Y2025/V45/I3/81