数学理论与应用 ›› 2017, Vol. 37 ›› Issue (2): 79-87.

• • 上一篇    下一篇

双截尾柯西分布顺序统计量的概率性质

熊雄1 ,庹恒2   

  1. 1.湘潭大学数学与计算科学学院,湘潭,411105; 2.中南大学数学与统计学院,长沙,411100
  • 出版日期:2017-06-30 发布日期:2020-09-23
  • 基金资助:

    湖南省教育厅科学研究项目(14C1088)

Probability Properties of Order Statistics to Bilaterally Truncated Cauchy Distribution#br#
#br#

Xiong Xiong1, Tuo Heng2   

  1. 1.School of Mathematics and Computational Science,Xiangtan University,Xiangtan 411105,China; 2.School of Mathematics and Statistics,Central South University,Changsha 411000,China

  • Online:2017-06-30 Published:2020-09-23

摘要: 设 {Xk,1≤k ≤n}独立同分布,服从参数为μ,λ;A,B 的双截尾柯西分布,X1,n,X2,n,…,Xn为其顺序统计量.本文给出Xk,n(1≤k ≤n)的密度函数,X1,n,X2,n,…,Xn,n的联合密度函数,极端顺序统计量X1,n和Xn,n的渐近分布以及Xk,n和Xn-k+1,n (k >1)的渐近分布,并证明X1,n和Xn,n是渐近独立的.

关键词: 双截尾柯西分布, 顺序统计量, 渐近分布, 渐近独立

Abstract:

 Let {Xk,1≤k ≤n}be independent and identically distributed random variables with bilaterally truncated Cauchy distribution of parameters μ,λ,A,B,X1,n,X2,n,…,Xn,n be their order statistics.In this paper we obtain the density function of Xk,n,the joint density function of X1,n,X2,n,…,Xn,n,the asymptotic distributions of their extreme order statistics X1,n and Xn,n,and the asymptotic distributions of Xk,n and Xn-k+1,n.We also show that X1,n and Xn,n is asymptotically independent.

Key words:

Bilaterally truncated Cauchy distribution, Order statistic, Asymptotic distribution, Asymptotical independence