数学理论与应用 ›› 2025, Vol. 45 ›› Issue (4): 28-49.doi: 10.3969/j.issn.1006-8074.2025.04.002

• • 上一篇    下一篇

具有超线性乘积噪声和强耗散非线性项的随机反应-扩散方程的弱均值吸引子

戚爱玲,鞠学伟*,佟校廷   

  1. 中国民航大学数学系, 天津, 300300
  • 出版日期:2025-12-28 发布日期:2026-01-15

Weak Mean Attractor of Stochastic Reaction-Diffusion Equation with Superlinear Multiplicative Noise and Strong Dissipativity Supercritical Nonlinearities

QI Ailing,JU Xuewei*,TONG Xiaoting   

  1. Department of Mathematics, Civil Aviation University of China, Tianjin 300300, China
  • Online:2025-12-28 Published:2026-01-15
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (No. 12271399) and the Fundamental Research Funds for the Central Universities (No. 3122025090)

摘要: 本文研究有界域上的随机反应-扩散方程 ${\rm d}u = \left(\Delta u + f(u) + g(x,t)\right){\rm d}t + \sigma(u){\rm d}W$的长时间动力学行为. 其中, 飘逸项$f(u)$ 具有多项式增长率$\beta$且满足强耗散条件, 扩散项$\sigma(u)$ 的增长阶为$\gamma$, 并假设$\beta + 1 > 2\gamma$. 在此假设条件下, 我们在Bochner空间中建立解的存在性、唯一性与正则性理论. 该分析仅基于弱单调性条件, 无需对非线性项$f$ 与 $\sig$ 施加额外的增长限制. 进一步地, 我们还证明系统弱均值吸引子的存在性. 本研究揭示在超线性增长背景下, 随机扰动与系统耗散效应间的平衡机制的新理论认知. 

关键词: 随机反应-扩散方程, 强耗散漂移项, 超线性噪声, Bochner空间, 弱均值吸引子

Abstract:  This paper investigates global solutions and long-time dynamics for the stochastic reaction-diffusion equation $\mathrm{d}u = \left(\Delta u + f(u) + g(x,t)\right)\mathrm{d}t + \sigma(u)\mathrm{d}W$ on a bounded domain, where the drift term $f(u)$, with polynomial growth rate $\beta$, is strongly dissipative and the diffusion term $\sigma(u)$ has growth rate $\gamma$, satisfying $\beta + 1 > 2\gamma$. Under this condition, we establish the existence, uniqueness, and regularity of solutions in Bochner spaces. Our analysis relies only on weak monotonicity conditions and requires no further growth restrictions on $f$ and $\sig$. Moreover, we prove the existence of a weak mean random attractor for the system. These results offer new insights into the balance mechanism between stochastic perturbations and dissipative effects in superlinear regimes.

Key words: Stochastic reaction-diffusion equation, Strongly dissipative drift term, Superlinear noise, Bochner space, Weak mean attractor