数学理论与应用 ›› 2025, Vol. 45 ›› Issue (3): 96-106.doi: 10.3969/j.issn.1006-8074.2025.03.005

• • 上一篇    下一篇

对数 Schrödinger 方程的规范化解

刘香;雷春雨*   

  1. 贵州民族大学数据科学与信息工程学院, 贵阳, 550025
  • 出版日期:2025-09-28 发布日期:2025-11-07

Normalized Solutions for a Logarithmic Schrödinger Equation

LIU Xiang; LEI Chunyu*   

  1. School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China
  • Online:2025-09-28 Published:2025-11-07
  • Supported by:
    This work is supported by the Natural Science Research Project of Department of Education of Guizhou Province (No. QJJ2023062), the National Natural Science Foundation of China (No. 52174184)

摘要:

本文考虑如下的对数Schrödinger方程:

\begin{equation*}

-\Delta u+\omega u =u\log|u|^2,~~ u\in H^1(\mathbb{R}^N),

\end{equation*}

其中$N\geq3$, $\omega>0$ 是一个常数. 在辅助方程的帮助下, 通过使用约束变分方法我们得到规化范解的存在性.

关键词: 对数Schr?dinger方程, 规范化解, 约束变分方法, 最小化问题

Abstract:

In this paper, we consider the following logarithmic Schrödinger equation:

\begin{equation*}

-\Delta u+\omega u =u\log|u|^2,~~ u\in H^1(\mathbb{R}^N),

\end{equation*}

where $N\geq3$, and $\omega>0$ is a constant. With an auxiliary equation, we obtain the existence of normalized solutions by using the constrained variational method.

Key words: Logarithmic Schr?dinger equation, Normalized solution, Constrained variational method , Minimization problem