数学理论与应用 ›› 2025, Vol. 45 ›› Issue (3): 81-95.doi: 10.3969/j.issn.1006-8074.2025.03.004

• • 上一篇    下一篇

二面体群$D_{2n}$上不变量$s_{d\mathbb{N}} (D_{2n})$的准确值

赵凯文*; 梁婉君; 陈丽芳   

  1. 南宁师范大学数学与统计学院, 南宁, 530100
  • 出版日期:2025-09-28 发布日期:2025-11-07

Precise Value of the Invariant $s_{d\mathbb{N}} (D_{2n})$ over the Dihedral Group $D_{2n}$

ZHAO Kevin*; LIANG Wanjun;CHEN Lifang   

  1. School of Mathematics and Statistics, Nanning Normal University, Nanning 530100, China
  • Online:2025-09-28 Published:2025-11-07
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (No. 12301425)

摘要: 设$G$是一个有限群,$d$为正整数,$s_{d\mathbb{N}}(G)$为使得$G$上每个长度不小于$l$的序列,都存在一个非空的积-1子序列$T$满足$|T|\equiv0 \pmod{d}$的最小正整数$l$. 本文研究二面体群$D_{2n}$的$s_{d\mathbb{N}} (D_{2n})$,证明当$n=2^r$时,$s_{d\mathbb{N}} (D_{2n})=\operatorname{lcm}(n, d)+\gcd(n, d)$,其中$r$是一个不小于3的正整数.

关键词: 二面体群, 积-1序列, 同余条件, Davenport常数

Abstract: Let $G$ be a finite group and $d$ a positive integer. Let $s_{d\mathbb{N}} (G)$ denote the smallest positive integer $l$ such that every sequence over $G$ of length at least $l$ contains a nonempty product-one subsequence $T$ with $|T|\equiv0 \pmod{d}$. This paper studies $s_{d\mathbb{N}} (D_{2n})$ for the dihedral group $D_{2n}$ and shows that when $n=2^r$ with $r\geq3$, the equality $s_{d\mathbb{N}} (D_{2n})=\operatorname{lcm}(n, d)+\gcd(n, d)$ holds.

Key words: Dihedral group, Product-one sequence, Congruence condition, Davenport constant