数学理论与应用 ›› 2025, Vol. 45 ›› Issue (3): 53-65.doi: 10.3969/j.issn.1006-8074.2025.03.002

• • 上一篇    下一篇

双循环群上凯莱图的Pfaffian性和平面性

唐浪1;刘伟俊2,3;卢蓉蓉2,*   

  1. 1. 湖南第一师范学院数学与统计学院, 长沙, 410205; 2. 中南大学数学与统计学院, 分析数学及其应用湖南省重点实验室, 长沙, 410083; 3. 广东科技学院, 通识教育学院, 东莞, 523083
  • 出版日期:2025-09-28 发布日期:2025-11-07

Pfaffian Property and Planarity of Cayley Graphs on Dicyclic Groups

TANG Lang1; LIU Weijun2,3; LU Rongrong2,*   

  1. 1. School of Mathematics and Statistics, Hunan First Normal University, Changsha 410205, China; 2. School of Mathematics and Statistics, Hunan Key Laboratory of Analytical Mathematics and Applications, Central South University, Changsha 410083, China; 3. College of General Education, Guangdong University of Science and Technology, Dongguan 523083, China
  • Online:2025-09-28 Published:2025-11-07
  • Supported by:
    This work is supported by NSFC (No. 12201202), NSF of Hunan Province (No. 2023JJ30180) and NSFC (No. 12471022)

摘要: 图的Pfaffian性在图论中具有十分重要的地位, 它精确刻画了那些能够在关于图的边数的多项式时间内计算出完美匹配数量的图类. Pfaffian图的研究起源于平面图的完美匹配的计数工作. 文献\cite{4,5,7}指出, 每一个平面图都是Pfaffian图. 因此, 图的 Pfaffian性和平面性在现代匹配理论中具有十分重要的作用. 本文给出 $4n$ 阶 $(n\geq 3)$ 双循环群 $T_{4n}$上的连通凯莱图的Pfaffian性和平面性的完整刻画, 证明凯莱图 $Cay(T_{4n}, S)$ 是Pfaffian图当且仅当$n$是奇数且 $S=\{a^{k_1},a^{2n-k_1},ba^{k_2},ba^{n+k_2}\}$, 其中 $1\leq k_1\leq n-1$, $0\leq k_2\leq n-1$, 且$(k_1,n)=1$, 并证明$Cay(T_{4n}, S)$一定不是平面图.

关键词: 凯莱图, 双循环群, Pfaffian性, 平面性

Abstract:

The Pfaffian property of graphs is of fundamental importance in graph theory, as it precisely characterizes those graphs for which the number of perfect matchings can be computed in polynomial time with respect to the number of edges. The study of Pfaffian graphs originated from the enumeration of perfect matching in planar graphs. References \cite{4,5,7} demonstrated that every planar graph is Pfaffian. Therefore, the Pfaffian property and planarity of graphs play a vital role in modern matching theory.

This paper contributes a complete characterization of the Pfaffian property and planarity of connected Cayley graphs over the dicyclic group $T_{4n}$ of order $4n$ $(n\geq 3)$, shows that the Cayley graph $Cay(T_{4n}, S)$ is Pfaffian if and only if $n$ is odd and $S=\{a^{k_1},a^{2n-k_1},ba^{k_2},ba^{n+k_2}\}$, where $1\leq k_1\leq n-1$, $0\leq k_2\leq n-1$ and $(k_1,n)=1$, and furthermore, shows that $Cay(T_{4n}, S)$ is never planar.

Key words: Cayley graph, Dicyclic group, Pfaffian property, Planarity