数学理论与应用 ›› 2024, Vol. 44 ›› Issue (4): 70-87.doi: 10.3969/j.issn.1006-8074.2024.04.005

• • 上一篇    下一篇

霍乱传播模型的全局稳定性和分岔分析

刘秋梅, 刘玲伶,  徐芳   

  1. 西南石油大学理学院, 成都, 610500
  • 出版日期:2024-12-28 发布日期:2025-01-21

Global Stability and Bifurcation Analysis of a Cholera Transmission Model

Liu Qiumei , Liu Lingling*, Xu Fang   

  1. Institute for Artificial Intelligence School of Science, Southwest Petroleum University, Chengdu 610500, China
  • Online:2024-12-28 Published:2025-01-21
  • Contact: Liu Lingling
  • Supported by:

    This work is supported by the National Natural Science

    Foundation of China (No. 12171337), the Central Government Guided Local Science and Technology Development Projects

    (No.2024ZYD0059), the Natural Science

    Foundation of Sichuan Province (No. 2022NSFSC0529) and the Open Research Fund Program of Data Recovery Key Laboratory of Sichuan Province (No. DRN2405)

摘要: 本文研究一种霍乱传播模型的稳定性和分岔现象, 在该模型中康复的个体可能再次变得易感. 我们确立判断疾病流行程度的阈值,并讨论平衡点存在的参数条件; 通过应用Routh-Hurwitz判据,证明平衡点的局部渐近稳定性; 利用复合矩阵和几何方法,分析地方病平衡点的全局动力学行为,并得出其全局渐近稳定的充分条件. 此外,当基本再生数为1时,疾病无流行平衡点为鞍结点. 我们还讨论在该种情形下的超临界分岔现象.

关键词: 霍乱模型, 基本再生数, 全局渐近稳定性, 鞍结点, 跨临界分岔

Abstract:

This paper investigates the stability and bifurcation phenomena of a cholera transmission model in which individuals who have recovered from the disease may become susceptible again. The threshold for determining disease prevalence is established, and the parameter conditions for

the existence of equilibria are discussed. The Routh-Hurwitz criterion is applied to demonstrate the local asymptotic stability of equilibria.

By utilizing composite matrices and geometric techniques, the global dynamic behavior of the endemic equilibrium is investigated, and the sufficient conditions for its global asymptotic stability are derived. Furthermore, the disease-free equilibrium is a saddle-node when the basic reproductive number is 1, and tthe transcritical bifurcation in this case is discussed.

Key words: Cholera model , Basic reproductive number, Global asymptotic stability, Saddle-node, Transcritical bifurcation