数学理论与应用 ›› 2024, Vol. 44 ›› Issue (4): 45-69.doi: 10.3969/j.issn.1006-8074.2024.04.004

• • 上一篇    下一篇

SD振子在共振情形下的有界解和无界解

边静珂,刘杰*   

  1. 河南理工大学数学与信息科学学院, 焦作, 454003
  • 出版日期:2024-12-28 发布日期:2025-01-21

Bounded and Unbounded Solutions of the SD Oscillator at Resonance

Bian Jingke, Liu Jie*   

  1. School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454003, China
  • Online:2024-12-28 Published:2025-01-21
  • Contact: Liu Jie
  • Supported by:

    The work is supported by the Key Research Funds for the Universities of Henan Province (No. 19A110018), and the Foundation

    for Key Teachers of Henan Polytechnic University (No. 2022XQG-09)

摘要:

本文研究如下的光滑-不连续振子(SD振子)解的有界性和无界性:

\begin{equation*} x''+f(x)x'+x-\frac{x}{\sqrt{x^{2}+\alpha^{2}}}=p(t).

\end{equation*}

由于$f(x)\neq0$, 该系统不是~Hamilton~系统, 我们需要引入可逆性假设以便利用可逆系统的小扭转定理. 此外, 当非负参数\,$\alpha$\,减小至\,$0$\,时, 系统变得不连续. 此时, 我们需要引入适当的变换来克服正则性的缺失. 我们证明: 对于任意非负参数\,$\alpha$\,和周期的奇函数 $p(t)$, 当\,$\left|\int^{2\pi}_{0}p(t)\sin t\,\dif\,t\right|<4$\,时, 方程所有解均有界; 当\,$\left|\int^{2\pi}_{0}p(t)\sin t\,\dif\,t\right|>4$\,时, 方程存在无界解; 当\,$\left|\int^{2\pi}_{0}p(t)\sin t\,\dif\,t\right|\geqslant 4+|F|_{\infty}$\, 时, 方程所有解均无界.

关键词: SD振子, 可逆系统, 有界解, 无界解

Abstract:

In this paper we study the boundedness and unboundedness of the solutions of the smooth and discontinuous (SD) oscillator

\begin{equation*}

x''+f(x)x'+x-\frac{x}{\sqrt{x^{2}+\alpha^{2}}}=p(t).

\end{equation*}

Since $f(x)\neq 0$, the system is non-Hamiltonian, so we have to introduce some reversibility assumptions to apply a suitable twist theorem, for reversible maps with small twist. Moreover, when the nonnegative parameter $\alpha$ decreases to 0, the system becomes discontinuous. In this case, we need to introduce some suitable transformations to overcome the lack of regularity. We will prove that for any nonnegative parameter $\alpha$, when $p(t)$ is an odd periodic function satisfying $\left|\int^{2\pi}_{0}p(t)\sin t\,\dif\,t\right|<4$, all the solutions are bounded; when $p(t)$ satisfies $\left|\int^{2\pi}_{0}p(t)\sin t\,\dif\,t\right|>4$, the SD oscillator has unbounded solutions, and when $p(t)$ satisfies $\left|\int^{2\pi}_{0}p(t)\sin t\,\dif\,t\right|\geqslant 4+|F|_{\infty}$, all the solutions are unbounded.

Key words: SD oscillator, Reversible system, Bounded solution, Unbounded solution