数学理论与应用 ›› 2021, Vol. 41 ›› Issue (1): 44-.

• • 上一篇    下一篇

广义超弹性杆波动方程解的适定性与色散极限行为

张再云1,2,*,刘振海2 ,邹鹏程1, 王琼1, 凌文镜1,欧阳前程1   

  1. 1.湖南理工学院数学学院,岳阳 414006; 2.玉林师范学院数学与统计学院, 玉林 537000
  • 出版日期:2021-03-30 发布日期:2021-08-10
  • 通讯作者: 张再云(1975−),E−mail:zhangzaiyun1226@126.com

Well-posedness and Dispersive Limit Behavior for the Solutions to a Generalized Hyperelastic-rod Wave Equation

  • Online:2021-03-30 Published:2021-08-10
  • Supported by:
    This work was supported by Scientific Research Fund of Hunan Provincial Education Department Nos.18A325, Research and Innovation team of Hunan Institute of Science and Technology (Grant No. 2019-TD-15), NNSF of China Grant Nos. 12071413, NSF of Guangxi (2018GXNSFDA138002), the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie (823731CONMECH). Also, this work was partially supported by Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering of Changsha University of Science and Technology Grant No. 2018MMAEZD05.

摘要:

本文研究了广义超弹性杆波动方程的局部适定性与色散极限行为(GHR波动方程).首先,本文利用Kato半群方法,得到了GHR波方程的局部适定性,并在参数γ收敛到零时证明了上述方程的解收敛到相应广义Camasa-Holm方程的解.

关键词: 广义超弹性杆波方程, 广义Camasa-Holm方程, 色散极限行为, 色散极限行为