数学理论与应用 ›› 2017, Vol. 37 ›› Issue (3-4): 78-92.

• • 上一篇    下一篇

基于灰色Verhulst-BP神经网络的中国电解铜消费峰值预测

黄小峰 ,廖丽佩 ,朱灏   

  1. 中南大学数学与统计学院
  • 出版日期:2017-12-30 发布日期:2020-09-22

Prediction of Consumption Peak of Electrolytic Copper in China Based on a Grey Verhulst-BP Neural Network

Huang Xiaofeng, Liao Lipei ,Zhu Hao   

  1. School of Mathematics and Statistics,Central South University,
  • Online:2017-12-30 Published:2020-09-22

摘要: 本文选取1999-2015年中国电解铜及铜消费典型行业数据,采用 Adaptive-Lasso方法梳理、分析并识别出影响中国铜消费量的关键行业,以此为基础构建灰色Verhulst和BP神经网络的组合模型,并用此模型预测中国铜消费量.中国铜消费峰值将于2020-2026年到达,峰值范围 在990万 吨-1300万吨之间,基于这一预测结果,建议铜冶炼生产能力控制在1280-1690万吨以内,并应抑制新增冶炼投资,避免出现产能过剩. 

关键词: 铜消费峰值, Adaptive-Lasso, 灰色, Verhulst, BP神经网络

Abstract: This paper selects the typical industry data of copper and copper consumption in China in the years 1999-2015and applies the adaptive-Lasso method to analyze and identify the key industries that affect the consumption of copper in China.Based on the analysis,a combined model of grey Verhulst and BP neural net-work is constructed,and the consumption of copper in China is predicted by this model.The peak of copper consumption in China will arrive in the years 2020-2026,with a peak range of 990×104-1300×10tons.And we suggest that the copper smelting production capacity should be controlled within 1280×104-1690× 104tons,and the new smelting investment should be suppressed so as to avoid overcapacity. 

Key words: Copper consumption peak, Adaptive-Lasso, Grey, Verhulst, BP neural network