数学理论与应用 ›› 2025, Vol. 45 ›› Issue (4): 107-125.doi: 10.3969/j.issn.1006-8074.2025.04.007

• • 上一篇    

基于单幅图像的自动对焦镜头精密相机标定: 一种灵活新方法

易学军1,*,桂敏蕙2,谢战统3   

  1. 1. 湖南大学数学学院, 长沙, 410082; 2. 深圳国际交流学院, 深圳, 518000; 3. 澳门大学科技学院, 澳门, 999078
  • 出版日期:2025-12-28 发布日期:2026-01-15

Single-Image-Based Precise Camera Calibration for Autofocus Lenses: A Novel Flexible Approach

YI Xuejun1,*, GUI Minhui2, XIE Zhantong3   

  1. 1. School of Mathematics, Hunan University, Changsha 410082, China; 2. Shenzhen College of International Education, Shenzhen 518000, China; 3. Faculty of Science and Technology, University of Macau, Macau 999078, China
  • Online:2025-12-28 Published:2026-01-15
  • Supported by:
    This work is supported by the Research on the Reform of Curriculum Assessment Methods for College Mathematics Platform Courses (No. 53111104016)

摘要:

在无人驾驶、无人机等多种拍摄场景中, 自动对焦镜头已成为获取清晰图像的关键组件. 然而, 传统的相机内参标定方法通常依赖于固定焦距下的多幅图像, 或需借助单幅图像中多个平面的标记点并结合多图像模型进行计算. 本文提出一种灵活的亚像素级鞍点提取方法, 仅需采集单幅包含三个非共面标定板的图像, 即可完成相机标定. 为实现三个标定板图像的单应性矩阵精确计算, 本文基于棋盘格角点的行列表格位置, 剔除偏离拟合网格线的角点以去除外点. 结合张正友标定法, 利用三个单应性矩阵推导出相机内参初始值及三个平面棋盘格的位姿. 在参数优化阶段, 构建一个多目标优化函数, 融合以下三类误差项:

1)外点去除后网格点的重投影误差;

2)基于单应性矩阵与内外参关系导出的几何约束误差;

3)跨平面线性约束误差——该约束旨在保持成像前不同平面上任意五点间的线性关系在成像后依然成立.

针对优化过程中权重选择的问题, 通过水平旋转重投影线并分析其置信区间来减轻斜率引起的偏差; 通过最小化置信区间与重投影线无交点的角点数量来确定最优权重. 若出现权重平局情况, 则选择重投影误差最小的内外参作为最终结果. 该方法能够高效求解相机的内参和外参, 仿真实验与真实场景实验均验证了其高精度与有效性. 本文所提方法简洁实用, 对快速相机标定具有重要的理论意义与实际价值, 有助于保障标定结果的准确性与可靠性.

关键词: 相机标定, 单图像标定, 棋盘格角点检测, 亚像素鞍点提取

Abstract:

In various imaging applications such as autonomous vehicles and drones, autofocus lenses are indispensable for capturing clear images. However, conventional camera calibration methods typically rely either on processing multiple images at a fixed focal length or on detecting multi-plane markers in a single image and then applying multi-image calibration models. This paper proposes a flexible and accurate calibration approach that extracts subpixel saddle points from a single image containing three non-coplanar calibration boards. To compute accurate homography matrices for the three boards, outliers are removed by eliminating chessboard points that deviated from the fitted grid lines according to their row and column positions. Initial estimates of the intrinsic parameters and the poses of the three planar chessboards are obtained using the three homography matrices in combination with Zhang's calibration method.

During parameter refinement, a multi-objective optimization function is constructed, incorporating three error terms:

(1) Reprojection error of the inlier grid points;

(2) Mechanism-driven error derived from the relationship between homography matrices and camera parameters;

(3) Cross-planar linearity constraint error, which preserves the pre-imaging collinearity of any five points across different planes after projection.


For weight selection in the optimization process, confidence intervals of the detected grid points are analyzed by horizontally rotating the reprojection lines to reduce bias introduced by line slope. The optimal weights are determined by minimizing the number of points whose confidence intervals does not intersect the reprojected lines. When multiple candidates yield similar reprojection performance, the parameter set with the smallest reprojection error is selected as the final result. This method efficiently estimates both intrinsic and extrinsic camera parameters. Simulations and real-world experiments validate the high precision and effectiveness of the proposed approach. Our technique is straightforward, practical, and holds significant theoretical and practical value for rapid and reliable camera calibration.


Key words: Camera calibration, Single-image calibration, Chessboard corner detection, Subpixel saddle point extraction