数学理论与应用 ›› 2025, Vol. 45 ›› Issue (4): 73-86.doi: 10.3969/j.issn.1006-8074.2025.04.005

• • 上一篇    下一篇

脉冲微分方程基于两种测度有界性的新准则

夏治南   

  1. 浙江工业大学数学科学学院, 杭州, 310023
  • 出版日期:2025-12-28 发布日期:2026-01-15

New Criteria for Boundedness in Terms of Two Measures for Impulsive Differential Equations

XIA Zhinan   

  1. School of Mathematical Sciences, Zhejiang University of Technology, Hangzhou 310023, China
  • Online:2025-12-28 Published:2026-01-15
  • Supported by:

    This research is supported by the Natural Science Foundation of Zhejiang Province (No. LY19A010013)

摘要:

本文利用Kurzweil-Henstock 积分理论研究广义常微分方程基于两种测度有界性的一些新准则. 作为应用,

我们得到脉冲微分方程基于两种测度的$(h_{0}, h)$-一致有界性和$(h_{0}, h)$-一致最终有界性的判别准则.

关键词: 广义常微分方程, 脉冲微分方程, $(h_{0}, h)$-一致有界性, $(h_{0}, h)$-一致最终有界性

Abstract:

In this paper, we utilize the theory of Kurzweil-Henstock integrals to investigate new criteria

for boundedness in terms of two measures for generalized ordinary differential equations.

As applications, we establish criteria for $(h_{0}, h)$-uniform boundedness

and $(h_{0}, h)$-uniform ultimate boundedness in terms of two measures for impulsive differential equations.

Key words: Generalized ordinary differential equation, Impulsive differential equation, $(h_{0}, h)$-uniform boundedness, $(h_{0}, h)$-uniform ultimate boundedness