数学理论与应用 ›› 2025, Vol. 45 ›› Issue (4): 73-86.doi: 10.3969/j.issn.1006-8074.2025.04.005
• • 上一篇 下一篇
夏治南
出版日期:
发布日期:
XIA Zhinan
Online:
Published:
Supported by:
This research is supported by the Natural Science Foundation of Zhejiang Province (No. LY19A010013)
摘要:
本文利用Kurzweil-Henstock 积分理论研究广义常微分方程基于两种测度有界性的一些新准则. 作为应用,
我们得到脉冲微分方程基于两种测度的$(h_{0}, h)$-一致有界性和$(h_{0}, h)$-一致最终有界性的判别准则.
关键词: 广义常微分方程, 脉冲微分方程, $(h_{0}, h)$-一致有界性, $(h_{0}, h)$-一致最终有界性
Abstract:
In this paper, we utilize the theory of Kurzweil-Henstock integrals to investigate new criteria
for boundedness in terms of two measures for generalized ordinary differential equations.
As applications, we establish criteria for $(h_{0}, h)$-uniform boundedness
and $(h_{0}, h)$-uniform ultimate boundedness in terms of two measures for impulsive differential equations.
Key words: Generalized ordinary differential equation, Impulsive differential equation, $(h_{0}, h)$-uniform boundedness, $(h_{0}, h)$-uniform ultimate boundedness
夏治南. 脉冲微分方程基于两种测度有界性的新准则[J]. 数学理论与应用, 2025, 45(4): 73-86.
XIA Zhinan. New Criteria for Boundedness in Terms of Two Measures for Impulsive Differential Equations[J]. Mathematical Theory and Applications, 2025, 45(4): 73-86.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: https://mta.csu.edu.cn/CN/10.3969/j.issn.1006-8074.2025.04.005
https://mta.csu.edu.cn/CN/Y2025/V45/I4/73