数学理论与应用 ›› 2025, Vol. 45 ›› Issue (4): 60-72.doi: 10.3969/j.issn.1006-8074.2025.04.004

• • 上一篇    下一篇

分数阶时滞RLC系统的渐近稳定性

郝余粮,郭钰, 刘易成*   

  1. 国防科技大学理学院, 长沙, 410073
  • 出版日期:2025-12-28 发布日期:2026-01-15

Asymptotic Stability of RLC Systems with Fractional-order and Time Delay

HAO Yuliang ,GUO Yu,LIU Yicheng*   

  1. College of Science, National University of Defense Technology, Changsha 410073, China
  • Online:2025-12-28 Published:2026-01-15
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (No. 12371180)

摘要: 本文系统研究分数阶时滞级联RLC网络的建模与稳定性. 我们首先基于Caputo分数阶导数构建含时滞的$n$级级联RLC网络模型, 并推导单级 ($n=1$)及双级 ($n=2$)网络的分数阶微分方程; 然后通过拉普拉斯变换得到系统的超越特征方程, 结合Matignon稳定性判据, 分别给出系统在无时滞和有时滞情形下的系统渐近稳定性条件. 研究表明, 无时滞系统的稳定性主要由分数阶阶数$\alpha$决定,而有时滞系统的稳定性则不受$\alpha$影响, 仅由时滞$\tau$决定. 特别地, 本文将确定系统保持稳定的时滞临界值$\tau_{\mathrm{max}}$. 最后, 通过数值分析(见表I)详细讨论电阻$R$、电感$L$、电容$C$、分数阶阶次$\alpha$及时滞$\tau$对系统稳定性的影响. 本研究可为分数阶时滞电路的稳定性分析与参数设计提供理论依据和优化指导.

关键词: 分数阶系统, 时滞电路, 级联RLC网络

Abstract:

This paper presents a systematic study on the modeling and stability analysis of fractional-order cascaded RLC networks with time delays. A generalized model of an $n$-stage cascaded RLC network with time delays is developed using the Caputo fractional derivative. The corresponding fractional-order differential equations are derived for both single-stage ($n=1$) and two-stage ($n=2$) configurations. The transcendental characteristic equation of the system is obtained via Laplace transform. By applying the Matignon stability criterion, asymptotic stability conditions are established for systems with and without time delays. It is shown that stability in the delay-free case depends mainly on the fractional order $\alpha$, whereas in the presence of time delays, stability is independent of $\alpha$ and instead governed by the delay parameter $\tau$. Notably, the critical delay threshold $\tau_{\mathrm{max}}$ for system stability is derived analytically. A detailed numerical study (Table I) further elucidates the effects of key parameters, including the resistance $R$, inductance $L$, capacitance $C$, fractional order $\alpha$, and time delay $\tau$ on the stability behavior.

This study provides a theoretical basis and practical design guidelines for tuning parameters to ensure stability in fractional-order circuits with time delays.

Key words: Fractional-order system, Time-delay circuit, Cascaded RLC network