数学理论与应用 ›› 2025, Vol. 45 ›› Issue (4): 50-59.doi: 10.3969/j.issn.1006-8074.2025.04.003

• • 上一篇    下一篇

初等交换2-群的不变量$D_2(C_2^r)$的反问题研究

赵凯文*,罗彩电   

  1. 南宁师范大学数学与统计学院, 南宁, 530100
  • 出版日期:2025-12-28 发布日期:2026-01-15

Inverse Problem of the Invariant $D_2(C_2^r)$ of Elementary Abelian 2-Groups

ZHAO Kaiwen*;LUO Caidian   

  1. School of Mathematics and Statistics Science, Nanning Normal University, Nanning 530100, China
  • Online:2025-12-28 Published:2026-01-15
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (No. 12301425)

摘要: 设$G$为有限交换群, $k$为正整数. Davenport常数是零和理论中的一个核心常数, 不变量$D_k(G)$是Davenport常数$D(G)$的一种推广, 定义为最大长度$l$, 使得$G$上长度为$l$的序列$B$存在$k$个非空且不相交的零和子序列. 本文研究初等交换2-群$C_2^r$上该不变量对应的反问题: 当$r \in [2,4]$时, 刻画$C_2^r$中长度为$ D_2(C_2^r)$和$D_2(C_2^r) - 1$, 且最多可分解为2个极小零和序列的零和序列的结构; 当$r \in [2,5]$时, 刻画长度为$D_2(C_2^r) - 1$的序列的结构.

关键词: 初等交换2-群, Davenport常数, 反问题, 零和序列

Abstract: Let $G$ be a finite abelian group and $k$ be a positive integer. The Davenport constant is a central invariant in zero-sum thoery. The invariant $D_k(G)$ generalizes the Davenport constant $D(G)$ and is defined as the maximum length $l$ such that there exists a sequence $B$ of length $l$ over $G$ containing $k$ disjoint non-empty zero-sum subsequences. This paper studies the inverse problem associated with this invariant for the elementary abelian 2-groups $C_2^r$. For $r \in [2,4]$, we characterize the structures of zero-sum sequences of length $ D_2(C_2^r)$ and $D_2(C_2^r) - 1$ in $C_2^r$ that can be decomposed into at most two minimal zero-sum subsequences. For $r \in [2,5]$, we characterize the structures of sequences of length $D_2(C_2^r) - 1$.

Key words: Elementary abelian 2-group, Davenport constant, Inverse problem, Zero-sum sequence