数学理论与应用 ›› 2025, Vol. 45 ›› Issue (2): 76-.doi: 10.3969/j.issn.1006-8074.2025.02.005
• • 上一篇 下一篇
段霁松*, 向常永
出版日期:
发布日期:
基金资助:
DUAN Jisong*, XIANG Changyong
Online:
Published:
Supported by:
摘要: 本文研究具有延迟项和非局部项的对数型粘弹性方程在声学边界条件下的爆破效应. 我们通过能量方法证明具有负初始能量的非平凡解会在有限时间内爆破, 并给出爆破时间的上界估计.此外, 我们还给出爆破时间的下界估计.
关键词: 有限时间爆破 , 对数粘弹性方程, 非局部项, 阻尼延迟, 声学边界条件
Abstract: In this paper, we investigate the blow-up phenomenon for a class of logarithmic viscoelastic equations with delay and nonlocal terms under acoustic boundary conditions. Using the energy method, we prove that nontrivial solutions with negative initial energy will blow up in finite time, and provide an upper bound estimate for the blow-up time. Additionally, we also derive a lower bound estimate for the blow-up time.
Key words: Finite-time blow-up, Logarithmic viscoelastic equation, Nonlocal term, Damping delay, Acoustic boundary condition
段霁松, 向常永. 一类具有非局部项、时间延迟和声学边界条件的对数型粘弹性方程的爆破效应[J]. 数学理论与应用, 2025, 45(2): 76-.
DUAN Jisong, XIANG Changyong. Blow-up Phenomenon for a Class of Logarithmic Viscoelastic Equations with Delay and Nonlocal Term under Acoustic Boundary Conditions[J]. Mathematical Theory and Applications, 2025, 45(2): 76-.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: https://mta.csu.edu.cn/CN/10.3969/j.issn.1006-8074.2025.02.005
https://mta.csu.edu.cn/CN/Y2025/V45/I2/76