数学理论与应用 ›› 2024, Vol. 44 ›› Issue (4): 1-18.doi: 10.3969/j.issn.1006-8074.2024.04.001

• •    下一篇

(m,n)-凝聚环与FP(m,n)-投射模

谭玲玲1,   张艺霞2,*, 周潘岳3   

  1. 1. 江汉大学人工智能学院, 武汉, 430056; 2. 曲阜师范大学数学科学学院, 曲阜, 273165; 3. 长沙理工大学数学与统计学院, 长沙, 410114
  • 出版日期:2024-12-28 发布日期:2025-01-21

(m,n)-coherent Rings and FP(m,n)-projective Modules

Tan Lingling1 , Zhang Yixia2,*, Zhou Panyue3   

  1. 1. School of Artificial Intelligence, Jianghan University, Wuhan 430056, China;  2. School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China;  3. School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, China
  • Online:2024-12-28 Published:2025-01-21
  • Contact: Zhang Yixia
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (No. 12471036), the project of Young and Middle-Aged Talents of Hubei Province (No. Q20234405), and the Scientific Research Fund of Hunan Provincial Education Department (No. 24A0221)

摘要: 在本文中, 对任意的非负整数$m,n$, 我们引入$(m,n)$-凝聚环与$FP_{(m,n)}$-投射模的概念, 证明: 对任意的$m,n\geq 0$, ($\mathcal{FP}_{(m,n)}$-Proj, ($\mathcal{FP}_{n}$-id)$_{\leq m}$)是完备余挠对, 并且是遗传的当且仅当对任意的$m\geq 0$及$n\geq 1$, 环$R$是左$n$-凝聚环. 此外, 我们研究$\mathcal{FP}_{(m,n)}$-Proj覆盖与包络的存在性, 得到若$\mathcal{FP}_{(m,n)}$-Proj关于纯商封闭, 则对任意的$n\geq2$, $\mathcal{FP}_{(m,n)}$-Proj是覆盖. 作为应用, 我们得到每个$R$-模有满的$\mathcal{FP}_{(m,n)}$-Proj包络当且仅当$R$的左$FP_{(m,n)}$-整体维数至多为1且$\mathcal{FP}_{(m,n)}$-Proj关于直积封闭.

关键词: $(m,n)$-凝聚环, $FP_{(m,n)}$-投射模, 覆盖, 包络, 余挠对

Abstract: In this paper, we introduce the notions of $(m,n)$-coherent rings and $FP_{(m,n)}$-projective modules for nonnegative integers $m,n$. We prove that ($\mathcal{FP}_{(m,n)}$-Proj, ($\mathcal{FP}_{n}$-id)$_{\leq m}$) is a complete cotorsion pair for any $m,n\geq 0$ and it is hereditary if and only if the ring $R$ is a left $n$-coherent ring for all $m\geq 0$ and $n\geq 1$. Moreover, we study the existence of $\mathcal{FP}_{(m,n)}$-Proj covers and envelopes and obtain that if $\mathcal{FP}_{(m,n)}$-Proj is closed under pure quotients, then $\mathcal{FP}_{(m,n)}$-Proj is covering for any $n\geq2$. As applications, we obtain that every $R$-module has an epic $\mathcal{FP}_{(m,n)}$-Proj-envelope if and only if the left $FP_{(m,n)}$-global dimension of $R$ is at most 1 and $\mathcal{FP}_{(m,n)}$-Proj is closed under direct products.

Key words: $(m,n)$-coherent ring, $FP_{(m,n)}$-projective module, Cover , Envelope , Cotorsion pair