数学理论与应用 ›› 2024, Vol. 44 ›› Issue (3): 11-.doi: 10.3969/j.issn.1006-8074.2024.03.002

• • 上一篇    下一篇

一维空间中具有资源依赖扩散的单物种模型的渐近动力学

黄赟1, 张大为2,*   

  1. 1. 仲恺农业工程学院数学与数据科学学院, 广州, 510225; 2. 佛山大学数学学院, 佛山, 528000
  • 出版日期:2024-09-28 发布日期:2024-11-06

Asymptotic Dynamics of a Single-species Model with Resource-dependent Dispersal in One Dimension

Huang Yun1, Zhang Dawei2,*   

  1. 1. School of Mathematics and Data Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;\\ 2. School of Mathematics, Foshan University, Foshan 528000, China
  • Online:2024-09-28 Published:2024-11-06
  • Contact: Zhang Dawei; E-mail: daweizhang_math@fosu.edu.cn
  • Supported by:
    This work is supported by the National Natural Science Foundation of China (Nos. 12301101, 12101121) and the Guangdong Basic and Applied Basic Research Foundation (Nos. 2022A1515110019, 2020A1515110585)

摘要: 本文研究一维空间中具有资源依赖扩散的单物种模型的渐近动力学. 为了克服资源依赖扩散带来的分析困难, 利用变量替换的思想将上述模型转变为一致扩散的模型. 然后, 采用夹挤方法获得模型正稳态解的存在唯一性, 这个解在后面的分析中具有至关重要的作用. 进一步, 使用上下解方法得到模型解的渐近性行为. 研究结果表明:在一维空间中, 当时间趋向于无穷大时, 模型解会局部一致地收敛到相应的正稳态解.

关键词: 渐近动力学, 资源依赖扩散, 稳态解, 上下解方法

Abstract:

In this paper, we study the asymptotic dynamics of a single-species model with resource-dependent dispersal in one dimension.

To overcome the analytical difficulties brought by the resource-dependent dispersal, we use the idea of changing variables to transform the model into a uniform dispersal one. Then the existence and uniqueness of positive stationary solution to the model can be verified by the squeezing argument, where the solution plays a crucial role in later analyses. Moreover, the asymptotic behavior of solutions to the model is obtained by the upper-lower solutions method. The result indicates that the solutions of the model converge to the corresponding positive stationary solution locally uniformly in one dimension as time goes to infinity.

Key words: Asymptotic dynamics, Resource-dependent dispersal, Stationary solution, Upper-lower solutions method