数学理论与应用 ›› 2017, Vol. 37 ›› Issue (3-4): 59-63.

• • 上一篇    下一篇

一类离散 Hindmarsh-Rose模型的分支延拓

李波   

  1. 安徽财经大学金融学院
  • 出版日期:2017-12-30 发布日期:2020-09-21
  • 基金资助:
    国家自然科学基金数学天元青年基金项目(11626029)

Bifurcation Continuation of a Discrete Hindmarsh-Rose Model

Li Bo   

  1. School ofFinance,Anhui University of Finance and Economics
  • Online:2017-12-30 Published:2020-09-21

摘要: 本文利用分支延拓理论,研究一类离散Hindmarsh-Rose模型不同分支之间的关系并给出数值模拟,进一步探讨该模型的复杂动力学性质,尤其是不同神经运动之间的转化关系.

关键词:

"> Hindmarsh-Rose模型, 分支延拓, 神经运动, 数值模拟

Abstract: In this paper,different kinds of bifurcation of a discrete Hindmarsh-Rose model is considered by bifurcation continuation theory,and numerical simulations are provided to explore the complex dynamics,especially the conversion between different neural behaviors. 


Key words: Hindmarsh-Rose model, Bifurcation continuation, Neural behavior, Numerical simulation