数学理论与应用 ›› 2017, Vol. 37 ›› Issue (3-4): 26-37.
• • 上一篇 下一篇
王为, 王晚生
出版日期:
发布日期:
Wang Wei ,Wang Wanshe
Online:
Published:
摘要: 延迟微分方程在科学与工程等多个领域中有着广泛应用.本文考虑延迟抛物型方程的时间逼近.首先证明延迟抛物型方程二阶变步长 BDF方法的稳定性,进而通过重构获得更高阶的数值逼近,由此获得二阶变步长 BDF方法的后验误差估计.
关键词: 延迟微分方程, 稳定性, 重构, 后验误差估计, BDF方法
Abstract: Parabolic equations with delay has been widely appeared in scientific and engineering fields.In this paper we consider the time approximation of parabolic equations with delay.Firstly,we prove the stability of variable step-size BDF2method for parabolic equations with delay.Then,we derive a higher order numerical approximation by reconstruction.Finally,we obtain a posteriori estimates of variable step-size BDF2 method for the equations.
Key words: Parabolic equation with delay; Stability analysis; Reconstruction; Posteriori error estimate; , BDF method
王为, 王晚生. 延迟抛物型方程二阶BDF方法的稳定性和后验误差估计[J]. 数学理论与应用, 2017, 37(3-4): 26-37.
Wang Wei , Wang Wanshe. Stability and Posteriori Estimates for the Variable Step-size BDF2 Method to Parabolic Equations with Delay[J]. Mathematical Theory and Applications, 2017, 37(3-4): 26-37.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: https://mta.csu.edu.cn/CN/
https://mta.csu.edu.cn/CN/Y2017/V37/I3-4/26
一类随机差分方程解的稳定性分析