Mathematical Theory and Applications ›› 2025, Vol. 45 ›› Issue (1): 1-24.doi: 10.3969/j.issn.1006-8074.2025.01.001
Next Articles
ZHANG Weiqiang*; WEN Yanyun
Online:
Published:
Contact:
Supported by:
Abstract:
In this paper, we study the following Schr\"odinger-Poisson system
\begin{equation*}
\left\{
\begin{array}{ll}
-\varepsilon^{p}\Delta_{p}u+V(x)|u|^{p-2}u+\phi |u|^{p-2}u=f(u)+|u|^{p^{*}-2}u\quad \mbox{in}\quad \mathbb{R}^{3}, \\
-\varepsilon^{2}\Delta \phi =|u|^{p}\quad\mbox{in}\quad \mathbb{R}^{3},
\end{array}
\right.
\end{equation*}
where $\varepsilon>0$ is a parameter, $\frac{3}{2}<p<3$, $\Delta_{p}u=\text{div}(|\nabla u|^{p-2}\nabla u)$, $p^{*}=\frac{3p}{3-p}$, $V:\mathbb{R}^{3}\rightarrow\mathbb{R}$ is a potential function with a local minimum and $f$ is subcritical growth. Based on the penalization method, Nehari manifold techniques and Ljusternik-Schnirelmann category theory, we obtain the multiplicity and concentration of positive solutions to the above system.
Key words: Schr?dinger-Poisson system\and Positive solution\and Ljusternik-Schnirelmann category theory\and Critical growth\and $p$-Laplacian 
ZHANG Weiqiang, WEN Yanyun. Multiplicity and Concentration of Positive Solutions for a Quasilinear Schrödinger-Poisson System with Critical Nonlinearity[J]. Mathematical Theory and Applications, 2025, 45(1): 1-24.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://mta.csu.edu.cn/EN/10.3969/j.issn.1006-8074.2025.01.001
https://mta.csu.edu.cn/EN/Y2025/V45/I1/1