数学理论与应用 ›› 2025, Vol. 45 ›› Issue (1): 1-24.doi: 10.3969/j.issn.1006-8074.2025.01.001

• •    下一篇

临界的拟线性Schrödinger-Poisson系统正解的多重性和集中性

张伟强*; 温彦云   

  1. 甘肃民族师范学院数学科学学院, 合作, 747000
  • 出版日期:2025-03-28 发布日期:2025-04-02

Multiplicity and Concentration of Positive Solutions for a Quasilinear Schrödinger-Poisson System with Critical Nonlinearity

ZHANG Weiqiang*;  WEN Yanyun   

  1. School of Department of Mathematics, Gansu Normal College For Nationalities, Hezuo 747000, China
  • Online:2025-03-28 Published:2025-04-02
  • Contact: ZHANG Weiqiang; E-mail: zhangwq19@lzu.edu.cn
  • Supported by:
    This work is supported by the Natural Science Foundation of Gansu Province (No. 24JRRP001)

摘要: 本文考虑以下薛定谔-泊松系统 \begin{equation*} \left\{ \begin{array}{ll} -\varepsilon^{p}\Delta_{p}u+V(x)|u|^{p-2}u+\phi |u|^{p-2}u=f(u)+|u|^{p^{*}-2}u\quad \mbox{in}\quad \mathbb{R}^{3}, \\ -\varepsilon^{2}\Delta \phi =|u|^{p}\quad\mbox{in}\quad \mathbb{R}^{3}, \end{array} \right. \end{equation*} 其中 $\varepsilon>0$ 是一个参量, $\frac{3}{2}<p<3$, $\Delta_{p}u=\text{div}(|\nabla u|^{p-2}\nabla u)$, $p^{*}=\frac{3p}{3-p}$, $V:\mathbb{R}^{3}\rightarrow\mathbb{R}$ 是满足局部极小条件的位势, $f$ 是次临界增长的. 基于罚方法、Nehari 流形技巧和 Ljusternik Schnirelmann 畴数理论, 我们得到正解的多重性和集中性.

关键词: Schr?dinger-Poisson系统, 正解, Ljusternik-Schnirelmann范畴理论, 临界增长, $p$-拉普拉斯算子

Abstract:

In this paper, we study the following Schr\"odinger-Poisson system

\begin{equation*}

\left\{

\begin{array}{ll}

-\varepsilon^{p}\Delta_{p}u+V(x)|u|^{p-2}u+\phi |u|^{p-2}u=f(u)+|u|^{p^{*}-2}u\quad \mbox{in}\quad \mathbb{R}^{3}, \\

-\varepsilon^{2}\Delta \phi =|u|^{p}\quad\mbox{in}\quad \mathbb{R}^{3},

\end{array}

\right.

\end{equation*}

where $\varepsilon>0$ is a parameter, $\frac{3}{2}<p<3$, $\Delta_{p}u=\text{div}(|\nabla u|^{p-2}\nabla u)$, $p^{*}=\frac{3p}{3-p}$, $V:\mathbb{R}^{3}\rightarrow\mathbb{R}$ is a potential function with a local minimum and $f$ is subcritical growth. Based on the penalization method, Nehari manifold techniques and Ljusternik-Schnirelmann category theory, we obtain the multiplicity and concentration of positive solutions to the above system.

Key words: Schr?dinger-Poisson system\and Positive solution\and Ljusternik-Schnirelmann category theory\and Critical growth\and $p$-Laplacian