数学理论与应用 ›› 2025, Vol. 45 ›› Issue (1): 45-61.doi: 10.3969/j.issn.1006-8074.2025.01.003

• • 上一篇    下一篇

具有 L2 超临界增长的p-Laplacian Schrödinger-Poisson方程的正规化解

李明雪; 张家锋*   

  1. 贵州民族大学数据科学与信息工程学院, 贵阳, 550025
  • 出版日期:2025-03-28 发布日期:2025-04-03

Normalized Solutions for p-Laplacian Schrödinger-Poisson Equations with L2-supercritical Growth

LI Mingxue;  ZHANG Jiafeng*   

  1. School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China
  • Online:2025-03-28 Published:2025-04-03
  • Supported by:

    This work is supported by the National Natural Science Foundation of China (No. 12461024), the Natural Science Research Project of Department of Education of Guizhou Province (Nos. QJJ2023012, QJJ2023061, QJJ2023062), the Natural Science

    Research Project of Guizhou Minzu University (No. GZMUZK[2022]YB06)

摘要:

本文研究如下具有$L^{2}$质量的~$p$-Laplacian Schrödinger-Poisson 方程

$$-\Delta_p u+|u|^{p-2}u+\lambda u+ \left(\frac{1}{4\pi|x|}*|u|^2\right)u=|u|^{q-2} u,\and x \in \mathbb{R}^3,$$

其中 $2 \leq p<3$, $\frac{5 p}{3}<q<p^{*}=\frac{3p}{3-p}$, $\lambda>0$ 是拉格朗日乘子. 我们利用变分法和山路引理找到该问题在规定质量上对应泛函的临界点, 从而得到方程有一个正规化解 .

关键词: 正规化解, $p$-Laplacian~方程, Schr?dinger-Poisson方程, 山路引理

Abstract:

In this paper, we consider the $p$-Laplacian Schrödinger-Poisson equation with $L^{2}$-norm constraint

$$-\Delta_p u+|u|^{p-2}u+\lambda u+ \left(\frac{1}{4\pi|x|}*|u|^2\right)u=|u|^{q-2} u,\and x \in \mathbb{R}^3,$$

where $2 \leq p<3$, $\frac{5 p}{3}<q<p^{*}=\frac{3p}{3-p}$, $\lambda>0$ is a Lagrange multiplier. We obtain the critical point of the corresponding functional of the problem on mass constraint by the variational method and the Mountain pass lemma, and then find a normalized solution to this equation.

Key words: Normalized solution, $p$-Laplacian equation , Schr?dinger-Poisson equation , Mountain pass lemma